Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.942
Filtrar
1.
Clin Case Rep ; 12(4): e8590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560284

RESUMO

Bladder duplication and congenital bladder diverticulum are rare anomalies. We described two boys with rare bladder anomalies found on prenatal ultrasounds. Postnatal investigations and surgical findings confirmed these bladder anomalies. The malformation was associated with other system anomalies. This report of pre- and postnatal imaging with surgical correlation contributes to our understanding about these rare bladder anomalies.

2.
Front Endocrinol (Lausanne) ; 15: 1376220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562414

RESUMO

Background: Identification of patients at risk for type 2 diabetes mellitus (T2DM) can not only prevent complications and reduce suffering but also ease the health care burden. While routine physical examination can provide useful information for diagnosis, manual exploration of routine physical examination records is not feasible due to the high prevalence of T2DM. Objectives: We aim to build interpretable machine learning models for T2DM diagnosis and uncover important diagnostic indicators from physical examination, including age- and sex-related indicators. Methods: In this study, we present three weighted diversity density (WDD)-based algorithms for T2DM screening that use physical examination indicators, the algorithms are highly transparent and interpretable, two of which are missing value tolerant algorithms. Patients: Regarding the dataset, we collected 43 physical examination indicator data from 11,071 cases of T2DM patients and 126,622 healthy controls at the Affiliated Hospital of Southwest Medical University. After data processing, we used a data matrix containing 16004 EHRs and 43 clinical indicators for modelling. Results: The indicators were ranked according to their model weights, and the top 25% of indicators were found to be directly or indirectly related to T2DM. We further investigated the clinical characteristics of different age and sex groups, and found that the algorithms can detect relevant indicators specific to these groups. The algorithms performed well in T2DM screening, with the highest area under the receiver operating characteristic curve (AUC) reaching 0.9185. Conclusion: This work utilized the interpretable WDD-based algorithms to construct T2DM diagnostic models based on physical examination indicators. By modeling data grouped by age and sex, we identified several predictive markers related to age and sex, uncovering characteristic differences among various groups of T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Aprendizado de Máquina , Algoritmos , Curva ROC , Biomarcadores
3.
aBIOTECH ; 5(1): 114, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38576432

RESUMO

[This corrects the article DOI: 10.1007/s42994-023-00124-6.].

4.
Front Plant Sci ; 15: 1331710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595761

RESUMO

The K+ uptake permease/high-affinity K+/K+ transporter (KUP/HAK/KT) family is the most prominent group of potassium (K+) transporters, playing a key role in K+ uptake, transport, plant growth and development, and stress tolerance. However, the presence and functions of the KUP/HAK/KT family in Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau), the fastest-growing plant, have not been studied. In this study, we identified 41 KUP/HAK/KT genes (PeHAKs) distributed across 18 chromosomal scaffolds of the Moso bamboo genome. PeHAK is a typical membrane protein with a conserved structural domain and motifs. Phylogenetic tree analysis classified PeHAKs into four distinct clusters, while collinearity analysis revealed gene duplications resulting from purifying selection, including both tandem and segmental duplications. Enrichment analysis of promoter cis-acting elements suggested their plausible role in abiotic stress response and hormone induction. Transcriptomic data and STEM analyses indicated that PeHAKs were involved in tissue and organ development, rapid growth, and responded to different abiotic stress conditions. Subcellular localization analysis demonstrated that PeHAKs are predominantly expressed at the cell membrane. In-situ PCR experiments confirmed that PeHAK was mainly expressed in the lateral root primordia. Furthermore, the involvement of PeHAKs in potassium ion transport was confirmed by studying the potassium ion transport properties of a yeast mutant. Additionally, through homology modeling, we revealed the structural properties of HAK as a transmembrane protein associated with potassium ion transport. This research provides a solid basis for understanding the classification, characterization, and functional analysis of the PeHAK family in Moso bamboo.

5.
JCI Insight ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592784

RESUMO

Recent studies have uncovered that non-coding sequence variants may relate to Axenfeld-Rieger syndrome (ARS), a rare developmental anomaly with genetic heterogeneity. However, how these genomic regions are functionally and structurally associated with ARS is still unclear. In this study, we performed genome-wide linkage analysis and whole-genome sequencing in a Chinese ARS family and identified a heterozygous deletion of about 570 kb (termed LOH-1) in the intergenic sequence between PITX2 and FAM241A. Knockout of LOH-1 homologous sequences caused ARS phenotypes in mice. RNA-seq and RT-qPCR revealed a significant reduction in Pitx2 gene expression in LOH-1-/- mice, while Foxc1 expression remained unchanged. ChIP-seq and bioinformatics analysis identified a potential enhancer region (LOH-E1) within LOH-1. Deletion of LOH-E1 led to a significant downregulation of the PITX2 gene. Mechanistically, we found a sequence (hg38 chr4:111,399,594-111,399,691) which is on LOH-E1 could regulate PITX2 by binding to RAD21, a critical component of the cohesin complex. Knockdown of RAD21 resulted in reduced PITX2 expression. Collectively, our findings indicate that a potential enhancer sequence which is within LOH-1 may regulate PITX2 expression remotely through cohesin-mediated loop domains, leading to ARS when absent. 2.

6.
Materials (Basel) ; 17(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591556

RESUMO

A high strain rate occurs when the strain rate exceeds 100 s-1. The mechanical behavior of materials at a high strain rate is different from that at middle and low strain rates. In order to study the dynamic compressive mechanical properties of ultra-high-performance steel-fiber-reinforced concrete (UHPSFRC) at high strain rates, an electro-hydraulic servo universal testing machine and a separate Hopkinson pressure bar (SHPB) with a diameter of 120 mm were used, respectively. A quasi-static compression test (strain rate 0.001 s-1) and impact compression test with a strain rate range of 90~200 s-1 were carried out to study the failure process, failure mode, and stress-strain curve characteristics of UHPSFRC at different strain rates and quantify the strain rate strengthening effect and fiber toughening effect. Based on the statistical damage theory and energy conversion principle, a dynamic damage constitutive model considering the effects of strain rate and fiber content was constructed. The results showed that the rate correlation of UHPSFRC and the fiber toughening properties showed a certain coupling competition mechanism. When the fiber content was less than 1.5%, with an increase in the steel fiber content, the crack initiation and propagation time of the specimen was extended, and the strain rate sensitivity gradually decreased. When the fiber content was 2%, the impact compressive strength of the specimen was optimal. Compared with UHPC, the dynamic increase factor (DIF) of UHPSFRC was significantly lower. The dynamic damage constitutive model established in this paper, considering the influence of strain rate and fiber content, has a good applicability and can describe the mechanical behavior of UHPSFRC at a high strain rate.

7.
Cancer Med ; 13(7): e7021, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562019

RESUMO

OBJECTIVE: Non-small-cell lung cancer (NSCLC) is a deadly form of cancer that exhibits extensive intercellular communication which contributed to chemoradiotherapy resistance. Recent evidence suggests that arrange of key proteins are involved in lung cancer progression, including gap junction proteins (GJPs). METHODS AND RESULTS: In this study, we examined the expression patterns of GJPs in NSCLC, uncovering that both gap junction protein, beta 2 (GJB2) and gap junction protein, beta 2 (GJB3) are increased in LUAD and LUSC. We observed a correlation between the upregulation of GJB2, GJB3 in clinical samples and a worse prognosis in patients with NSCLC. By examining the mechanics, we additionally discovered that nuclear factor erythroid-2-related factor 1 (NFE2L1) had the capability to enhance the expression of connexin26 and connexin 31 in the NSCLC cell line A549. In addition, the use of metformin was discovered to cause significant downregulation of gap junction protein, betas (GJBs) by limiting the presence of NFE2L1 in the cytoplasm. CONCLUSION: This emphasizes the potential of targeting GJBs as a viable treatment approach for NSCLC patients receiving metformin.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Metformina , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Conexinas/genética , Conexinas/metabolismo , Conexinas/uso terapêutico , Junções Comunicantes/metabolismo , Fator 1 Relacionado a NF-E2/metabolismo
8.
Opt Express ; 32(7): 10887-10898, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570951

RESUMO

In this paper, we propose a surface plasmon resonance (SPR) fiber-optic pH sensor combined with a tilted fiber Bragg grating (TFBG) by continuously coating gold and polyaniline (PANI) onto the surface of a TFBG. The micron-scale thickness polyaniline film provides the sensor with good sensitivity, and it achieves accurate measurement of pH values ranging from 2 to 12 by utilizing the pH-responsive mechanism of PANI and the surface plasmon resonance characteristics. Experimental results show that within the 2-12 pH range, the sensitivity of the TFBG surface plasmon resonance pH sensor based on PANI coating is 0.50335 nm/pH, and results demonstrate, a linear correlation coefficient between wavelength and pH value reaching 0.96614. This indicates significant potential for future engineering applications in real-world pH measurement using this sensor.

9.
aBIOTECH ; 5(1): 17-28, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38576436

RESUMO

Small RNA (sRNA)-mediated RNA silencing (also known as RNA interference, or RNAi) is a conserved mechanism in eukaryotes that includes RNA degradation, DNA methylation, heterochromatin formation and protein translation repression. In plants, sRNAs can move either cell-to-cell or systemically, thereby acting as mobile silencing signals to trigger noncell autonomous silencing. However, whether and what proteins are also involved in noncell autonomous silencing have not been elucidated. In this study, we utilized a previously reported inducible RNAi plant, PDSi, which can induce systemic silencing of the endogenous PDS gene, and we demonstrated that DCL3 is involved in systemic PDS silencing through its RNA binding activity. We confirmed that the C-terminus of DCL3, including the predicted RNA-binding domain, is capable of binding short RNAs. Mutations affecting RNA binding, but not processing activity, reduced systemic PDS silencing, indicating that DCL3 binding to RNAs is required for the induction of systemic silencing. Cucumber mosaic virus infection assays showed that the RNA-binding activity of DCL3 is required for antiviral RNAi in systemically noninoculated leaves. Our findings demonstrate that DCL3 acts as a signaling agent involved in noncell autonomous silencing and an antiviral effect in addition to its previously known function in the generation of 24-nucleotide sRNAs. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00124-6.

10.
Brain Res ; : 148917, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582415

RESUMO

Exploring the intricate pathogenesis of Vascular Dementia (VD), there is a noted absence of potent treatments available in the current medical landscape. A new brain-protective medication developed in China, Edaravone dexboeol (EDB), has shown promise due to its antioxidant and anti-inflammatory properties, albeit with a need for additional research to elucidate its role and mechanisms in VD contexts. In a research setup, a VD model was established utilizing Sprague-Dawley (SD) rats, subjected to permanent bilateral typical carotid artery occlusion (2VO). Behavioral assessment of the rats was conducted using the Bederson test and pole climbing test, while cognitive abilities, particularly learning and memory, were evaluated via the novel object recognition test and the Morris water maze test. Ensuing, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), IL-1ß, IL-6, IL-4, and tumor necrosis factor-α (TNF-α) were determined through Enzyme-Linked Immunosorbent Assay (ELISA). Synaptic plasticity-related proteins, synaptophysin (SYP), post-synaptic density protein 95 (PSD-95), and N-methyl-D-aspartate (NMDA) receptor proteins (NR1, NR2A, NR2B) were investigated via Western blotting technique. The findings imply that EDB has the potential to ameliorate cognitive deficiencies, attributed to VD, by mitigating oxidative stress, dampening inflammatory responses, and modulating the NMDA receptor signaling pathway, furnishing new perspectives into EDB's mechanism and proposing potential avenues for therapeutic strategies in managing VD.

11.
Animals (Basel) ; 14(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612356

RESUMO

The contamination of aquatic ecosystems by the heavy metal copper (Cu) is an important environmental issue and poses significant risks to the physiological functions of aquatic organisms. Macrobrachium rosenbergii is one of the most important freshwater-cultured prawns in the world. The hepatopancreas of crustaceans is a key organ for immune defense, heavy metal accumulation, and detoxification, playing a pivotal role in toxicological research. However, research on the molecular response of the hepatopancreas in M. rosenbergii to Cu exposure is still lacking. In this study, the transcriptomic response in the hepatopancreas of M. rosenbergii was studied after Cu exposure for 3 and 48 h. Compared with the control group, 11,164 (7288 up-regulated and 3876 down-regulated genes) and 10,937 (6630 up-regulated and 4307 down-regulated genes) differentially expressed genes (DEGs) were identified after 3 and 48 h exposure, respectively. Most of these DEGs were up-regulated, implying that gene expressions were largely induced by Cu. Functional enrichment analysis of these DEGs revealed that immunity, copper homeostasis, detoxification, DNA damage repair, and apoptosis were differentially regulated by Cu. Seven genes involved in immunity, detoxification, and metabolism were selected for validation by qRT-PCR, and the results confirmed the reliability of RNA-Seq. All these findings suggest that M. rosenbergii attempts to resist the toxicity of Cu by up-regulating the expression of genes related to immunity, metabolism, and detoxification. However, with the excessive accumulation of reactive oxygen species (ROS), the antioxidant enzyme system was destroyed. As a result, DNA damage repair and the cellular stress response were inhibited, thereby exacerbating cell damage. In order to maintain the normal function of the hepatopancreas, M. rosenbergii removes damaged cells by activating the apoptosis mechanism. Our study not only facilitates an understanding of the molecular response mechanisms of M. rosenbergii underlying Cu toxicity effects but also helps us to identify potential biomarkers associated with the stress response in other crustaceans.

12.
Food Sci Nutr ; 12(4): 2671-2678, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628213

RESUMO

The aim of this study was to investigate the association between hypothyroidism in early pregnancy and small intestinal bacterial overgrowth (SIBO) and the effect of probiotics. Patients with hypothyroidism in early pregnancy and normal pregnant women during the same period were included in the methane-hydrogen breath test to compare the incidence of SIBO, smoothed curve fit, and differences in clinical symptoms. For those who combined with SIBO, the rate of clinical symptom conversion, thyroid hormones, and changes in associated inflammatory indexes were compared after 21 days of treatment with probiotics on top of conventional levothyroxine sodium tablets. The results are as follows: (1) The incidence of combined SIBO in patients with hypothyroidism in pregnancy was 56.0%, significantly higher than the 28.0% of normal pregnant women during the same period. (2) The highest value of hydrogen plus methane gas in 90 min in pregnancy hypothyroid patients showed a significant negative correlation with FT4 (p < .001, SD = 0.169). (3) Abdominal distension symptoms were significantly increased in both groups after combined SIBO (p = .036, p = .025), and the conversion rate after treatment was 69.2% and 75.0%, respectively. (4) In hypothyroidism, pregnancy combined with SIBO, TSH, and CRP was higher before treatment (p = .001, p = .012) and decreased significantly after treatment (p = .001, p = .008). Hypothyroidism in early pregnancy is associated with SIBO, and probiotic treatment is significantly effective.

13.
Sci Total Environ ; : 172671, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38653407

RESUMO

Soil acidification often suppresses microbial growth and activities, resulting in a negative impact on soil organic carbon (C) decomposition. While the detrimental effects of acidification on soil and plant properties have been extensively studied, less attention has been paid on the shifts in soil microbial communities and their influences of the decomposition of organic C with different chemical complexities. Taking advantage of an acid addition experiment in a Tibetan alpine meadow, here we examined the response of soil microbial communities to soil acidification and microbial effect on the decomposition of organic C with different chemical complexities (i.e., glucose and lignin, representing labile and recalcitrant C respectively). We found that soil acidification had no impact on microbial respiration and microbial abundance even though it decreased bacterial diversity significantly. Soil acidification increased the relative abundance of some microbial taxa, like Alphaproteobacteria and Acidobacteriia in bacteria increased by 36 %, 284 %, and Eurotiomycetes, Sordariomycetes and Leotiomycetes in fungi increased by 145 %, 279 % and 12.7-fold, but decreased the relative abundance of Acidimicrobiia by 33 % in highest acid addition treatment. Changes in microbial communities (bacterial and fungal community composition, the diversity of bacterial community and the ratio of fungi to bacteria) are significantly related to the decomposition of glucose and lignin. More specifically, soil acidification decreased the decomposition of glucose but increased the decomposition of lignin, indicating a trade-off between the decomposition of labile and recalcitrant soil organic C under soil acidification. Overall, shifts in microbial communities under soil acidification might be accompanied by an increased ability to break down more recalcitrant C. This trade-off between the decomposition of labile and recalcitrant C may change soil C quality under future acid deposition scenarios.

14.
Aging (Albany NY) ; 162024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38637116

RESUMO

Hepatocellular carcinoma (HCC) stands out as the most prevalent type of liver cancer and a significant contributor to cancer-related fatalities globally. Metabolic reprogramming, particularly in glucose, lipid, and amino acid metabolism, plays a crucial role in HCC progression. However, the functions of ß-alanine metabolism-related genes (ßAMRGs) in HCC remain understudied. Therefore, a comprehensive evaluation of ßAMRGs is required, specifically in HCC. Initially, we explored the pan-cancer landscape of ßAMRGs, integrating expression profiles, prognostic values, mutations, and methylation levels. Subsequently, scRNA sequencing results indicated that hepatocytes had the highest scores of ß-alanine metabolism. In the process of hepatocyte carcinogenesis, metabolic pathways were further activated. Using ßAMRGs scores and expression profiles, we classified HCC patients into three subtypes and examined their prognosis and immune microenvironments. Cluster 3, characterized by the highest ßAMRGs scores, displayed the best prognosis, reinforcing ß-alanine's significant contribution to HCC pathophysiology. Notably, immune microenvironment, metabolism, and cell death modes significantly varied among the ß-alanine subtypes. We developed and validated a novel prognostic panel based on ßAMRGs and constructed a nomogram incorporating risk degree and clinicopathological characteristics. Among the model genes, EHHADH has been identified as a protective protein in HCC. Its expression was notably downregulated in tumors and exhibited a close correlation with factors such as tumor staging, grading, and prognosis. Immunohistochemical experiments, conducted using HCC tissue microarrays, substantiated the validation of its expression levels. In conclusion, this study uncovers ß-alanine's significant role in HCC for the first time, suggesting new research targets and directions for diagnosis and treatment.

15.
Int J Ophthalmol ; 17(4): 700-706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638249

RESUMO

AIM: To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs. METHODS: The clinical data of 155 patients were retrospectively collected in this study, and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed. RESULTS: Among the 155 patients (age from 12 to 87 years old, with an average age of 57, 99 males and 56 females) with eye infections (160 eyes: 74 in the left eye, 76 in the right eye and 5 in both eyes, all of which were exogenous), 71 (45.81%) strains were gram-positive bacteria, 23 (14.84%) strains were gram-negative bacteria and 61 (39.35%) strains were fungi. Gram-positive bacteria were highly resistant to penicillin and erythromycin (78.87% and 46.48% respectively), but least resistant to vancomycin at 0. Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole (100% and 95.65% respectively), but least resistant to meropenem at 0. Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences (P<0.05) in the resistance of both to cefoxitin, cotrimoxazole, levofloxacin, cefuroxime, ceftriaxone and ceftazidime, and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria. The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva, cornea, aqueous humor or vitreous body and other eye parts. Besides, Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections. CONCLUSION: Gram-positive bacteria are the dominant bacteria in eye infections, followed by gram-negative bacteria and fungi. Considering the resistance of gram-negative bacteria to multiple drugs, monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.

16.
Glob Chang Biol ; 30(4): e17281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619550

RESUMO

The ongoing climate change on the Tibetan Plateau, leading to warming and precipitation anomalies, modifies phosphorus (P) cycling in alpine meadow soils. However, the interactions and cascading effects of warming and precipitation changes on the key "extracellular" and "intracellular" P cycling genes (PCGs) of bacteria are largely unknown for these P-limited ecosystems. We used metagenomics to analyze the individual and combined effects of warming and altered precipitation on soil PCGs and P transformation in a manipulation experiment. Warming and increased precipitation raised Olsen-P (bioavailable P, AP) by 13% and 20%, respectively, mainly caused by augmented hydrolysis of organic P compounds (NaOH-Po). The decreased precipitation reduced soil AP by 5.3%. The richness and abundance of the PCGs' community in soils on the cold Tibetan plateau were more sensitive to warming than altered precipitation. The abundance of PCGs and P cycling processes decreased under the influence of individual climate change factors (i.e., warming and altered precipitation alone), except for the warming combined with increased precipitation. Pyruvate metabolism, phosphotransferase system, oxidative phosphorylation, and purine metabolism (all "intracellular" PCG) were closely correlated with P pools under climate change conditions. Specifically, warming recruited bacteria with the phoD and phoX genes, which encode enzymes responsible for phosphoester hydrolysis (extracellular P cycling), strongly accelerated organic P mineralization and so, directly impacted P bioavailability in alpine soil. The interactions between warming and altered precipitation profoundly influenced the PCGs' community and facilitated microbial adaptation to these environmental changes. Warming combined with increased precipitation compensated for the detrimental impacts of the individual climate change factors on PCGs. In conclusion, warming combined with rising precipitation has boosting effect on most P-related functions, leading to the acceleration of P cycling within microbial cells and extracellularly, including mineralization and more available P release for microorganisms and plants in alpine soils.


Assuntos
Ecossistema , Solo , Humanos , Disponibilidade Biológica , Mudança Climática , Fósforo
17.
J Fluoresc ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613708

RESUMO

Acetylcholinesterase (AChE) plays an important role in the treatment of human diseases, environmental security and global food supply. In this study, the simple fluorescent indicators and MnO2 nanosheets were developed and integrated to establish a ratiometric fluorescence sensing system for the detection of AChE activity. Two fluorescence signals could be recorded independently at the same excitation wavelength, which extended the detection range and enhanced the visibility of results. Fluorescence of F-PDA was quenched by MnO2 nanosheets on account of inner filtering effect. Meanwhile, the nonfluorescent OPD was catalytically oxidized to 2,3-diaminophenazine by MnO2 nanosheets. The acetylcholine (ATCh) was catalytically hydrolyzed by AChE to enzymatic thiocholine, which decomposed MnO2 to Mn2+, recovered the fluorescence of F-PDA and reduced the emission of ox-OPD. Utilizing the fluorescence intensity ratio F468/F558 as the signal readout, the ratiometric fluorescence method was established to detect AChE activity. Under the excitation wavelength of 410 nm, the ratio F460/F558 against the AChE concentration demonstrated two linear relationships in the range 0.05 -1.0 and 1.0-50 U·L- 1 with a limit of detection (LOD) of 0.073 U·L- 1. The method was applied to the detection of AChE activity and the analysis of the inhibitor Huperzine-A. Due to the advantages of high sensitivity and favorable selectivity, the method possesses an application prospect in the activity deteceion of AChE and the screening of inhibitors.

18.
Cell Rep ; 43(4): 114094, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38613784

RESUMO

The importance of trained immunity in antitumor immunity has been increasingly recognized, but the underlying metabolic regulation mechanisms remain incompletely understood. In this study, we find that squalene epoxidase (SQLE), a key enzyme in cholesterol synthesis, is required for ß-glucan-induced trained immunity in macrophages and ensuing antitumor activity. Unexpectedly, the shunt pathway, but not the classical cholesterol synthesis pathway, catalyzed by SQLE, is required for trained immunity induction. Specifically, 24(S),25-epoxycholesterol (24(S),25-EC), the shunt pathway metabolite, activates liver X receptor and increases chromatin accessibility to evoke innate immune memory. Meanwhile, SQLE-induced reactive oxygen species accumulation stabilizes hypoxia-inducible factor 1α protein for metabolic switching into glycolysis. Hence, our findings identify 24(S),25-EC as a key metabolite for trained immunity and provide important insights into how SQLE regulates trained-immunity-mediated antitumor activity.

19.
Adv Mater ; : e2403154, 2024 Apr 17.
Artigo em Holandês | MEDLINE | ID: mdl-38631700

RESUMO

Van der Waals (vdW) ferromagnetic materials have emerged as a promising platform for the development of 2D spintronic devices. However, studies to date are restricted to vdW ferromagnetic materials with low Curie temperature (Tc) and small magnetic anisotropy. Here, a chemical vapor transport method is developed to synthesize a high-quality room-temperature ferromagnet, Fe3GaTe2 (c-Fe3GaTe2), which boasts a high Tc = 356 K and large perpendicular magnetic anisotropy. Due to the planar symmetry breaking, an unconventional room-temperature antisymmetric magnetoresistance (MR) is first observed in c-Fe3GaTe2 devices with step features, manifesting as three distinctive states of high, intermediate, and low resistance with the sweeping magnetic field. Moreover, the modulation of the antisymmetric MR is demonstrated by controlling the height of the surface steps. This work provides new routes to achieve magnetic random storage and logic devices by utilizing the room-temperature thickness-controlled antisymmetric MR and further design room-temperature 2D spintronic devices based on the vdW ferromagnet c-Fe3GaTe2.

20.
Macromol Rapid Commun ; : e2400008, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659335

RESUMO

Conductive hydrogels play a crucial role in advancing technologies like implantable bioelectronics and wearable electronic devices, owing to their favorable conductivity and appropriate mechanical properties. Here, we report a novel bottom-up approach for crafting conductive nanocomposite hydrogels to achieve enhancing conductive and mechanical properties. In this approach, new poly(ɛ-caprolactone)-based block copolymers with sulfonic groups were first synthesized and self-assembled into uniform polyanionic nanoplatelets. Subsequently, these negatively charged nanoplatelets, with sulfonic groups on the surface, were employed as nano-additives for the polymerization of 3,4-ethylenedioxythiophene (EDOT), resulting in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/nanoplatelet complex with 3.8 times enhanced electrical conductivity compared with their counterparts prepared using block copolymers (BCPs). Blending the (PEDOT:PSS)/nanoplatelet complex with calcium alginate, nanocomposite hydrogels were successfully prepared. In comparison with hydrogels with (PEDOT:PSS)/BCP complexes prepared by a top-down method, the nanocomposite hydrogels were found to show twice as strong mechanical strength and 1.6 times higher conductivity. This work provides valuable insights into the bottom-up construction of conductive hydrogels for bioelectronics using well-controlled polymeric nanoplatelets. This article is protected by copyright. All rights reserved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...